技術(shù)
導(dǎo)讀:近日,你應(yīng)該看到了社交媒體上對(duì)于網(wǎng)站 ThisPersonDoesNotExist.com,生成無(wú)數(shù)不存在人臉的鋪天蓋地的消息,以及楊冪換朱茵的假臉圖像。
近日,你應(yīng)該看到了社交媒體上對(duì)于網(wǎng)站
ThisPersonDoesNotExist.com,生成無(wú)數(shù)不存在人臉的鋪天蓋地的消息,以及楊冪換朱茵的假臉圖像。一方面,這說(shuō)明,AI
技術(shù)的火正從專業(yè)人士那里不知不覺(jué)發(fā)展到了頻繁上熱搜的時(shí)期,但另一方面強(qiáng)勢(shì)的 AI 技術(shù)發(fā)展帶給了大眾更大的恐慌情緒。
從假人臉、假人聲到假消息,AI 利用來(lái)自人類(lèi)世界的數(shù)據(jù)集,正在創(chuàng)造一個(gè)以假亂真的仿真世界。
從人類(lèi)的視角來(lái)看,AI 技術(shù)帶來(lái)的這些前所未有的創(chuàng)造力是一種威脅,是為“假”,但換個(gè)角度,AI 正在創(chuàng)造的“仿真”人類(lèi)信息世界,可能正給人們帶來(lái)在面對(duì)未來(lái)時(shí)更大的困惑和不安全感。
在這里要重申:AI 正在創(chuàng)造一個(gè)獨(dú)特的虛擬(虛假)信息世界。
除了眾所周知的 Deepfake 這樣的換臉技術(shù)外,今天要介紹的是與人們息息相關(guān)的指紋,它被廣泛應(yīng)用于指紋鎖、手機(jī)、安檢等應(yīng)用場(chǎng)景中,有極高的安全等級(jí)。但如今指紋也開(kāi)始能被 AI 技術(shù)“復(fù)制”了,由 AI 合成的指紋能輕松騙過(guò)識(shí)別的掃描儀。
這個(gè)叫 DeepMasterPrints 的系統(tǒng),確實(shí)像是跟 Deepfake 來(lái)自同一個(gè)世界,在由 AI 創(chuàng)造太過(guò)逼真的事物上,業(yè)內(nèi)人士一般都喜歡加個(gè)前綴“Deep”。
DeepMasterPrints 系統(tǒng)由紐約大學(xué)工程學(xué)院的 5 位研究人員開(kāi)發(fā),其研究于去年 10 月在洛杉磯舉行的生物測(cè)量學(xué)會(huì)議上發(fā)表,主要可以用人工智能來(lái)制作虛假的指紋,它可以以假亂真,輕松“騙過(guò)”生物識(shí)別掃描儀(或人眼)。
研究人員稱,DeepMasterPrints 在一個(gè)系統(tǒng)中復(fù)制了 23% 的人類(lèi)指紋部分,錯(cuò)誤率為千分之一。而當(dāng)錯(cuò)誤匹配率達(dá)到百分之一時(shí),DeepMasterPrints 能在 77% 的情況下模擬真實(shí)指紋騙取掃描儀的“信任” 。
左圖是真實(shí)指紋,右圖為 AI 合成指紋
這些合成指紋在“騙”過(guò)存有許多指紋的系統(tǒng)時(shí)可能很有效(不同于你手機(jī)中的指紋記錄,它可能只記錄了幾個(gè)數(shù)字),DeepMasterPrints 開(kāi)發(fā)的工具進(jìn)行運(yùn)行幾個(gè)假指紋,通過(guò)系統(tǒng)查看是否有任何指紋與任何用戶賬戶匹配。攻擊者可能通過(guò)反復(fù)試驗(yàn)獲得更多成功的機(jī)會(huì),類(lèi)似于黑客對(duì)密碼進(jìn)行暴力或字典攻擊的破解方式,不是通過(guò)系統(tǒng)運(yùn)行數(shù)百萬(wàn)流行密碼的軟件。
具體而言,其背后的技術(shù)原理是,通常研究人員采用兩種生成對(duì)抗網(wǎng)絡(luò) GAN 組合在真實(shí)圖像中使用,其中一個(gè)神經(jīng)網(wǎng)絡(luò),使用公開(kāi)、可用的指紋圖像,訓(xùn)練神經(jīng)網(wǎng)絡(luò)識(shí)別真的指紋圖像,然后用另一套神經(jīng)網(wǎng)絡(luò),訓(xùn)練創(chuàng)建生成偽造指紋。
研究人員解釋,可以將第二個(gè)神經(jīng)網(wǎng)絡(luò)的假指紋圖像輸入第一個(gè)神經(jīng)網(wǎng)絡(luò)中以測(cè)試仿真程度。隨著時(shí)間的推移,第二個(gè)神經(jīng)網(wǎng)絡(luò)則會(huì)“學(xué)習(xí)”生成逼真的指紋圖像,最終騙過(guò)人眼和掃描儀。
DeepMasterPrints 正是利用了生物識(shí)別指紋系統(tǒng)中的兩個(gè)缺陷。首先,大多數(shù)指紋識(shí)別儀器在掃描時(shí)不會(huì)對(duì)整個(gè)指紋進(jìn)行掃描,而只是對(duì)指紋的一部分上進(jìn)行匹配;其次,多數(shù)設(shè)備允許用戶提交多個(gè)指紋圖像,匹配其中任何一部分,便可以確認(rèn)用戶身份。這使得由 AI 偽造的指紋更容易騙過(guò)指紋掃描儀。
帶有訓(xùn)練網(wǎng)絡(luò)的潛在變量演化。左邊是 CMA-ES 的高級(jí)概述,右邊的方框表明如何計(jì)算潛在變量。
這樣一個(gè)系統(tǒng)是如何創(chuàng)建的?根據(jù)論文描述,為了開(kāi)發(fā) DeepMasterPrint,研究人員將生成器的潛在變量演化為最優(yōu)值。生成器的輸入稱為潛在變量,因?yàn)樗鼈儗?duì)網(wǎng)絡(luò)輸出的影響只能通過(guò)觀察到的圖像來(lái)進(jìn)行理解。由于網(wǎng)絡(luò)以 100 個(gè)潛在變量作為輸入,那最優(yōu)解是 100 維空間中的一個(gè)點(diǎn)。
如上圖所示,LVE(Latent Variable Evolution,潛在變量演化技術(shù)) 對(duì)這些點(diǎn)進(jìn)行采樣,將它們轉(zhuǎn)換為圖像,然后對(duì)圖像進(jìn)行評(píng)分,以了解最佳點(diǎn)隨時(shí)間的分布情況。這些最佳點(diǎn)是 DeepMasterPrint 的基因型,然后可以映射到圖像上。
LVE 可以使用任何進(jìn)化算法(或其他隨機(jī)全局優(yōu)化器)來(lái)搜索潛在空間。進(jìn)化算法不需要梯度,因此這是黑盒優(yōu)化的理想方法。在這個(gè)域中,匹配器可以報(bào)告匹配了多少身份(不同的指紋)以及相應(yīng)匹配率,至于如何得到這些結(jié)果的卻并不提供任何信息。
梯度沒(méi)有顯示 DeepMasterPrint 的哪個(gè)像素效果最好或最差。由于 LVE 的適應(yīng)度得分是身份匹配的數(shù)量,因此適應(yīng)度景觀(fitness landscape)是不連續(xù)的。由于卷積網(wǎng)絡(luò)的層次性,潛在變量也是不可獨(dú)立分離的。
研究人員的這篇論文像是給了黑客破解指紋鎖的密碼,但他們告訴 Gizmodo,如果沒(méi)有驗(yàn)證生物識(shí)別是否來(lái)自真人,很多這些對(duì)抗性攻擊都有可能發(fā)生,希望他們的研究能加強(qiáng)指紋安全工作,推動(dòng)生物識(shí)別傳感器中的活體檢測(cè)。
不過(guò),AI 技術(shù)的兩面性在于道高一尺魔高一丈,不知道潘多拉魔盒完全打開(kāi)后,還會(huì)如何“解鎖”當(dāng)下的物理世界,給人類(lèi)更大的意想不到的震撼。